Uremia and Inflammation

References 

1.  Urine Metabolome website.  Urine Metabolome Statistics.  Available at http://www.urinemetabolome.ca/statistics.  Accessed March 26, 2020.

2.  Romi M, et al.  Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation.  BMC Nephrol.  2017 Oct 31;18(1):326.

3.  Frustaci A, et al.  Heart Failure From Gouty Myocarditis: A Case Report.  Ann Intern Med. 2020;172(5):363-365.

4.  Kok V, et al.  Allopurinol Therapy in Gout Patients Does Not Associate With Beneficial Cardiovascular Outcomes: A Population-Based Matched-Cohort Study.  PLoS One. 2014;9(6):e99102. Published 2014 Jun 4. doi:10.1371/journal.pone.0099102.

5.  Kerstin B, et al.  Vascular Inflammation and Media Calcification Are Already Present in Early Stages of Chronic Kidney Disease.  Cardiovasc Pathol. 2017;27:57–67.

6.  Eloueyk A, et al. Uremic Serum Induces Inflammation in Cultured Human Endothelial Cells and Triggers Vascular Repair Mechanisms. Inflammation. 2019;42(6):2003–2010.   

7.  Stenvinkel P, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int. 2005;67(4):1216–1233.

8.  Crépin T et al.  Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients Nephrol Dial Transplant. 2018;10.1093/ndt/gfy276.

9.  Kooman JP, et al. Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol. 2017;313(4):F938–F950.

10.  Hoyer F, Nahrendorf M.  Uremic toxins activate macrophages: implications for atherosclerosis in chronic kidney disease. Circulation. 2019;139(1):97–100.

11.  Martinez Cantarin MP, et al.  Uremia induces adipose tissue inflammation and muscle mitochondrial dysfunction. Nephrol Dial Transplant. 2017;32(6):943–951.

12.  Claro LM, et al. The Impact of Uremic Toxicity Induced Inflammatory Response on the Cardiovascular Burden in Chronic Kidney Disease. Toxins (Basel). 2018;10(10):384.

13.  Wang X, Shapiro J.  Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat Rev Nephrol. 2019;15(3):159–175.

14.  Sarnak MJ, et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;74(14):1823–1838.

15.  Nesheiwat Z, Lee JJ. Uremic Pericarditis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.

16.  Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management [published correction appears in Adv Chronic Kidney Dis. 2010 Jan;17(1):111].  Adv Chronic Kidney Dis. 2009;16(2):94–100.

17.  Jing W, Jabbari B, Vaziri ND. Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway and disruption of blood brain barrier. Am J Transl Res. 2018;10(7):2137–2147.

18.  O’Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J. 2018;11(6):810–821.

19.  Fallahzadeh MK, et al. Interleukin-2 serum levels are elevated in patients with uremic pruritus: a novel finding with practical implications. Nephrol Dial Transplant. 2011;26(10):3338–3344.

20.  Wolley MJ, Hutchison CA. Large uremic toxins: an unsolved problem in end-stage kidney disease. Nephrol Dial Transplant. 2018;33(suppl_3):iii6–iii11.

21.  Ren T, et al. Imbalance of Th22/Treg cells causes microinflammation in uremic patients undergoing hemodialysis. Biosci Rep. 2019;39(10):BSR20191585.

22.  Colombo G, et al.  Advanced oxidation protein products in nondiabetic end stage renal disease patients on maintenance haemodialysis. Free Radic Res. 2019;53(11-12):1114–1124.

23.  Chang MC, et al. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One. 2014;9(12):e114446. Published 2014 Dec 17.

24.  Weichhart T, et al. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol. 2012;23(5):934–947.

25.  Pawlak K, Mysliwiec M, Pawlak D. Endocan–the new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clin Biochem. 2015;48(6):425–430.

26.  Peng DZ, et al. Relationship between leptin and chronic inflammatory state in uremic patients. Eur Rev Med Pharmacol Sci. 2014;18(19):2882–2885.

27.  Kapiotis S, et al. Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: implication in hemodialysis mediated atherogenic LDL modification. Free Radic Res. 2005;39(11):1225–1231.

28.  Thongprayoon C, et al. Effects of Probiotics on Inflammation and Uremic Toxins Among Patients on Dialysis: A Systematic Review and Meta-Analysis. Dig Dis Sci. 2019;64(2):469–479.

29.  Vitetta L, Llewellyn H, Oldfield D. Gut Dysbiosis and the Intestinal Microbiome: Streptococcus thermophilus a Key Probiotic for Reducing Uremia. Microorganisms. 2019;7(8):228.

30.  Sun L, et al. Macrophages Are Involved in Gut Bacterial Translocation and Reversed by Lactobacillus in Experimental Uremia. Dig Dis Sci. 2016;61(6):1534–1544.

31.  Wei M, et al. Probiotic Bifidobacterium animalis subsp. lactis Bi-07 alleviates bacterial translocation and ameliorates microinflammation in experimental uraemia. Nephrology (Carlton). 2014;19(8):500–506.

32.  Liang S, et al. Homocysteine Aggravates Intestinal Epithelial Barrier Dysfunction in Rats with Experimental Uremia. Kidney Blood Press Res. 2018;43(5):1516–1528.

33.  Six I, et al. Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120.  Atherosclerosis. 2015;243(1):248–256.

34.  Yang CY, Tarng DC. Diet, gut microbiome and indoxyl sulphate in chronic kidney disease patients. Nephrology (Carlton). 2018;23 Suppl 4:16–20.

35.  Cicero AFG, et al. Effect of apple polyphenols on vascular oxidative stress and endothelium function: a translational study. Mol Nutr Food Res. 2017;61(11):10.1002/mnfr.201700373.

36.  Witko-Sarsat V, et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 2003;64(1):82–91.

37.  Vera M, et al. Antioxidant and Anti-Inflammatory Strategies Based on the Potentiation of Glutathione Peroxidase Activity Prevent Endothelial Dysfunction in Chronic Kidney Disease [published correction appears in Cell Physiol Biochem. 2019;52(5):1251-1252]. Cell Physiol Biochem. 2018;51(3):1287–1300.

38.  Samadian F, et al. Evaluation of Curcumin’s effect on inflammation in hemodialysis patients. Clin Nutr ESPEN. 2017;22:19–23.