The Canary in the Coal Mine -or- How to Improve Kidney Function


References

1. Wang CJ et al. The medicinal use of water in renal disease. Kidney Int. 2013 Jul:84(1): 45-53.

2. Clark WF et al. Hydration and Chronic Kidney Disease Progression; A Critical Review of the Evidence. Am J Nephrol. 2016: 43(4):281-92.

3. Clark WF et al. Hydration and Chronic Kidney Disease Progression: A Critical Review of the evidence. Am J Nephrol. June 2016;43:281-292.

4.  Clark WF et al. The Chronic Kidney Disease Water Intake Trial: Protocol of a Randomized Controlled Trial. Can J Kidney Health Dis. 2017;4: 2054358117725106.

5.  Chang Xu et al. Self-Fluid Management in Prevention of Kidney Stones: A PRISMA-Compliant Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Medicine (Baltimore). 2015 Jul;94 (27): e1042.

6.  Mitra P et al. Does the quality of drinking water matter in kidney stone disease. A study in West Bengal, India. Investig Clin Urol. 2018 May(3):158-165.

7.  Post A et al. Creatine is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients. 2019 May 10:11(5).

8.  Boero R et al. Salt intake and kidney disease. 2002 May-Jun:15(3):225-9.

9.  Jhee, JH et al. Effects of Coffee Intake on Incident Chronic Kidney Disease: Community-Based Prospective Cohort Study. Am J Med. 2018. Vol 131 (12):1482-1490. December 2018.

10. Rybakowska IM et al. Effect of decaffeinated coffee on function and nucleotide metabolism in kidney. Mol. Cell Biochem. 2018 Feb:439(1-2):11-18.

11. Wijampreecha K et al. Association of coffee consumption and chronic kidney disease: A meta-analysis.  Int J Clin Pract. 2017 Jan:71(1).

12. Shu X et al. Green tea intake and risk of incident of kidney stones: Prospective cohort studies in middle-aged and elderly Chinese individuals. Int J Urol. 2019 Feb: 26(2): 241-246.

13. Yi W et al. Green Tea Polyphenols Ameliorate the Early Renal Damage Induced by a High-Fat Diet via Ketogenesis/SIRT3 Pathway. Oxid Med Cell Longev. 2017: 9032792.

14. Naziroglu M et al. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. J Membr Biol. 2014 Aug: 247(8):667-73.

15. Prezioso D et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl. 2015 Jul 7;87(2):105-120.

16. Liakopoulos V et al. Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? Oxid Med Cell Longev. 2019 Jan 15;20199109473. Ecollection 2019.

17. Khatami PG et al. The effects of high-dose vitamin E supplementation on biomarkers of kidney injury, inflammation, and oxidative stress in patients with diabetic nephropathy: A randomized, double-blind, placebo-controlled trial. J Clin Lipidol. 2016 Jul-Aug:10(4): 922-929.

18. Mune M et al. Vitamin E supplementation improves high density lipoprotein and endothelial functions in end-stage kidney disease patients undergoing hemodialysis. Clin Nephrol. 2018 Sep:90(3):212-221.

19. Shevchuk SV et al. The relationship between homocysteine level and vitamins B12, B9 and B6 in patients with chronic kidney disease. Wiad Lek. 2019;72(4):532-538.

20. Gerster H. No contribution of ascorbic acid to renal calcium oxalate stones. Ann Nutr Metab. 1997;41(5):269-282.

21. Malihi Z et a. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr. 2016 Oct; 104(4):1039-1051.

22. Massy ZA et al. Magnesium-based interventions for normal kidney function and chronic kidney disease. Magnes Res. 2016 Apr 1:29(4):126-140.

23. Xu Y et al. Efficacy of coenzyme Q10 in patients with chronic kidney disease: protocol for a systematic review. BMJ Open. 2019 May 14:9(5); e029053.

24. Bakhshayeshkaram M et al. The Effects of Coenzyme Q10 Supplementation on Metabolic Profiles of Patients with Chronic Kidney Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Pharm Des. 2018;24 (31):3710-3723.

25.  Ki Y et al. Effect of Coenzyme Q10 on Radiation Nephropathy in Rats. J Korean Med Sci. 2017 May;32(5):757-763.

26. Ustuner MA et al. Effects of benfotiamine and coenzyme Q10 on kidney damage induce gentamicin. Tissue Cell. 2017 Dec;49(6):691-696.

27. Kitada M and Kova D. Renal Protective Effects of Resveratrol. Oxid Med Cel Longev. 2013: 568093. Published online 2013 Nov 28.

28. Shimizu MH et al. N-acetylcysteine protects against renal injury following bilateral ureteral obstruction. Nephrol Dial Transplant. 2008 Oct 23(10):3067-74.

29. Wang AG et al. Effect of Acetyl-L-carnitine Used for Protection of Neonatal Hypoxic-Ischemic Brain Injury in Male and Female Rats. Neurochem Res. 2019 Apr 30.

30. Gholipur-Shahraki T et al. Effects of Carnitine on Nutritional Parameters in Patients with Chronic Kidney Disease: An Updated Systematic Review and Meta-Analysis. J Res Pharm Pract. 2018 Apr-Jun;7(2):57-68.

31. Zhang J and McCullough PA. Lipoic Acid in the Prevention of Acute Kidney Injury. Nephron. 2016: 134(3):133-140.

32. Z Li et al. Melatonin therapy protects against renal injury before and after release of bilateral ureteral obstruction in rats. Life Sci. 2019 Jul 15: 229:104-115.

33. Kumas M et al. Investigation of dose-dependent effects of berberine against renal ischemia/reperfusion injury in experimental diabetic rats. Nefrologia. 2019 Jul-Aug:39(4).

34. Qin X et al. Berberine Protects Glomerular Podocytes via Inhibiting Drp1-Mediated Mitochondrial Fission and Dysfunction. Theranostics. 2019 Feb 28:9(6): 1698-1713.

35. Gholampour F and Keikha S. Berberine protects the liver and kidney against functional disorders and histological damages induced by ferrous sulfate. Iran J Basic Med Sci. 2018 May: 21(5):476-482.

36.  Ren YL et ak, Research progress of berberine in the treatment of diabetic kidney disease. Zhongguo Zhong Yao Za Zhi. 2017 Feb;42(3):438-442.

37. Lin Y et al. Berberine protects renal tubular cells against hypoxia/reoxygenation injury view the Sirt1/p53 pathway. J Nat Med. 2018 Jun;72(3):715-723.

38.  Zhang X et al. Protective effect of berberine on high glucose and hypoxia-induced apoptosis via the modulation of HIF-1a in renbal tubular epithelial cells. Am J Transl Res. 2019 Feb 15;11(2):669-682.

39. Sen Z et al. Total Coumarins from Hydrangea paniculata against Cisplatin-Induced Acute Kidney Damage in Mice by Suppressing Renal Inflammation and Apoptosis. Evid Based Complement Alternat Med. 2017;2017:5350161.

40. Zhang S et al. Total Coumarins from Hydrangea paniculata Show Renal Protective Effects in Lipopolysaccharide –Induced Acute Kidney Injury via Anti-inflammatory and Antioxidant Activities. Front Pharmacol. 2017 Dec 14;8:872.

41. Sen Z et al. Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 oxidation and smad 2/3-mediated profibrosis. Phytomedicine. 2019 Apr;57:385-395.

42. Li Y et al. Activation of Sirtuin 3 by Silibin Attentuates Mitochondrial Dysfunction in CIsplatin-induced Acute Kidney Injury. Front Pharmacol. 2017 Apr 5;8:178.

43. De Souza Santos V et al. Silymarin protects against radiocontrast induced nephropathy in mice. Life Sci. 2019 Jul 1;228:305-315.

44.  Wei X et al. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Clin Sci (Lond). 2017 Apr 1;131(7):567-581.

45. Sarchar S et al. Antiadhesive hyrdoalcoholic extract from Apium graveolens fruits prevents bladder and kidney infection against uropathogenic E. coli. Fitoterapia. 2018 Jun;127:237-244.

46. Zhong Y et al. Protective effects of apigenin against 3-MCPD-induce renal injury in rat. Chem Biol Interact. 2018 Dec 25;296:9-17.

47. Liu X et al. Huangqi-Danshen Decoction Ameliorates Adenine-Induced Chronic Kidney Disease by Modulating Mitochondrial Dynamics. Evid Based Complement Alternat Med. 2019 Jan 1: 2019.9574045.

48. He L et al. Effects of water extract of salvia miltiorrhiza against renal injury in rats exposed to cadmium. Zhonghua Yi Xue Za Zhi. 2017 Jan 3:97(1):57-61.

49.  Xiang X et al. Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/B-catenin and TGY-B signaling inhibition. Pharmacol Res. 2019 Jan:139:26-40.

50.  Zhang HF et al. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-kB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin. 2018 Dec:39(12);1855-1864.

51. Kreydiyyeh SI and Usta J. Diuretic effect and mechanism of action of parlsey. J Ethnopharmacol. 2002 Mar;79(3):353-7.

52. Saeidi J et al. Therapeutic effects of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats. Urol J. 2012 Winter;9 (1):361-6.

53. Atlas S et al. Protective effect of Diyarbakir watermelon juice on carbon tetrachloride-induced toxicity in rats. Food Chem Toxicol. 2011 Sep;49 (9):2433-8.

54. Chan KY et al. Excessive watermelon consumption causing hyperkalaemia and increased symptom burden of an end stage renal disease patient. Nephrology (Carlton). 2016 Aug;21(8):721.

55. Siddiqui WA et al. Evaluation of anti-urolithiatic and diuretic activities of watermelon (Citrullus lanatus) using in vivo and in vitro experiments. Biomed Pharmacother. 2018 Jan; 97-1212-1221.

56. Di Cerbo A et al. A nutraceutical diet based on Lespedeza spp., Vaccinium macrocarpon and Taraxacum officinale improves spontaneous feline kidney disease.  Physiol Rep. 2008 Jun:6(12) e13737.

57. Yousefi-Ghale Salimi et al. Inhibitory effects of taraxasterol and aqueous extract of Taraxacum officinale on calcium oxalate crystallization: in vitro study. Ren Fail. 2018 Nov; 49(1):298-305.

58. Sanae M and  Yasuo A. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotension-converting enzyme activity in the kidney of spontaneously hypertensive rats. J Agric Food Chem. 2013 Jun 12;61(23):5520-5.

59. Poormoosavi SM et al. Protective effects of Asparagus officinalis extract against Bisphenol A-induced toxicity in Wistar rats. Toxicol Rep. 2018 Mar 9;5:427-433.

60. Ardakani Movaghati MR et al. Efficacy of black seed (Nigella sativa) on kidney stone dissolution. A randomized double-blind, placebo-controlled trial. Phytother Res. 2019 May;33(5):1404-1412.

61. Foroqui Z et al. Protective effect of Nigella sativa oil on cisplatin induced nephrotoxicity and oxidative damage in rate kidney. Biomed Pharmacother. 2017 Jan;85:7-15.

62. Huang KC et al. Chinese Herbal Medicine Improves the Long-Term Survival Rate of Patients With Chronic Kidney Disease in Taiwan: A Nationwide Retrospective Population-Based Cohort Study. Front Pharmacol. 2018 Oct 1:9:1117.

63. Ali BH et al. Effects of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rates with adeinin-induced chronic kidney disease. J Pharm Pharmacol. 2017 Sep;69(9):1219-1229.

64. Melzig MF. Goldenrod—a classical exponent of urological phytotherapy. Wein Med Wochenschr. 2004 Nov;154 (21-22):523-7.

65. Weir MA et al. Micro-Particle Curcumin for the Treatment of Chronic Kidney Disease-: Study Protocol for a Multicenter Clinical Trial. Can J Kidney Health Dis. 2018 Dec 5;5: 2054358118813088.

66. 52. Kang DG et al. Butein ameliorates renal concentration ability in cisplatin-induced acute renal failure in rats. Biol Pharm Bull. 2004 Mar:27(3):336-70.

67. Brown AC. Kidney toxicity related to herbs and dietary supplements: Online table of case reports. Part 3 of 5 series. Food Chem Toxicol. 2017 Sep;107(Pt A):502-519.

68.  Luciano RL and Perazella MA. Aristolochic acid nepthropathy: epidemiology, clinical presentation, and treatment. Drug Saf. 2015 Jan 38(1):55-64.

69.  Fernando-Prado R. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients. 2017 May 12;9(5).